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INTRODUCTION

Prostate cancer (PCa) is the leading cancer among men in the United States, and is a disease with
strong genetic susceptibility. The genetic susceptibility is due to the inheritance of multiple sequence
variants, majorly in the form of single nucleotide polymorphisms (SNPs). Most current genetic studies
focus only on the single SNP association studies. In contrast, few studies have explored the role of
interactions of multiple SNPs with PCa risk, due to limited statistical approaches available to study
interactions in a genome-wide level. In fact, gene-gene interaction is the norm rather than exception
for complex diseases such as PCa. Inference from tumorigenesis and results from genetic modeling
studies suggest that multiple susceptibility genes, either additively or multiplicatively, determine
individual risk to PCa. The importance of gene-gene interaction is also supported by empirical
evidence from model organisms and human studies. Results from simulation studies suggest that
simultaneous evaluation of multiple genetic variants can improve the statistical power to detect
additional PCa risk variants and can be more fruitful than traditional approaches that exclusively focus
on main effects34. It is expected that additional PCa risk variants will be identified using gene-gene
interaction analyses.

In this DOD funded proposal, we propose to 1) identify SNPs in the genome that interact to have
stronger effects on PCa risk in the CGEMS GWAS data, 2) confirm the gene-gene interaction effect
on PCa risk identified from the CGEMS study in 1,000 PCa cases and 1,000 controls in CAPS, 3)
further confirm the gene-gene interaction effects on PCa risk for pairs of SNPs implicated in Aim 2
among the remaining 1,893 cases and 781 controls in CAPS, and 4) fine map the genomic regions
where SNPs have been confirmed to have a strong gene-gene interaction effect on PCa risk among
all 2,893 cases and 1,781 controls in CAPS.

BODY
Approved Statement of Work:
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We will take advantage of two existing large study populations to test this hypothesis. The first study
population is the NCI Cancer Genetic Markers of Susceptibility (CGEMS) study, where genome-wide
data are available for 1,172 PCa case patients and 1,157 control subjects of European Americans
descent. The second study population is our large population-based case-control study from Sweden
(CAPS), with 2,893 PCa patients and 1,781 control subjects. These two large study populations are
necessary to have sufficient statistical power to detect true interactions in the genome and to remove
false positives using a multiple-stage study design.

Aim 1. Identify SNPs in the genome that interact to have stronger effects on PCarisk in the
CGEMS GWAS data.

Step by step method and expected results

1) (Months 1) Preparation of the study, including IRB and other logistic issues.

2) (Months 2) Pre-association analysis and imputation of all the SNPs in the genome.

3) (Months 3-12) Logistic regression analysis to identify pairs of SNPs that interact to have
stronger effects on PCa risk.



4) (Months 3-12) Bayesian epistasis association mapping (BEAM) to identify pairs of SNPs that
interact to have stronger effects on PCa risk.

Outcome and deliverables

We will identify pairs of SNPs in the genome whose interaction terms reach P < 0.001. Based on
the results of genome-wide searches for SNPs that interact with rs1447295 at 8924, we expect
to identify ~450 independent SNPs that interact with each of the twelve known PCa risk SNPs.
In addition, we expect to identify additional SNPs that have stronger two-way or three-way
interaction effects on PCa risk from the BEAM analysis. These SNPs, estimated to number
around ~5,000, will be selected for further confirmation in Aim 2.

Aim 2. Confirm gene-gene interaction effects on PCa risk identified from the CGEMS study in
1,000 PCa cases and 1,000 controls in CAPS

Step by step method and expected results

1) (Months 6-16) Genotype ~5,000 SNPs among 1,000 cases and 1,000 controls in CAPS using
ISELECT of Illlumina.

2) (Months 17-20) Analyze data using logistic regression and BEAM methods to remove false
positives identified in Aim 1 and obtain a smaller subset of SNPs that most likely represent true
interaction for further confirmation in larger samples.

Outcome and deliverables

Most of the false positive interactions will be removed from this aim. We expect 125 pairs of
SNPs in this stage will have P < 0.05 and have the same direction of interaction effect as in the
CGEMS data [(5,000 x 0.05)/2]. These SNPs will be selected for further confirmation in Aim 3.
The actual number of SNPs may be higher if there are more true interaction effects in the
genome.

Aim 3. Further confirm the gene-gene interaction effects on PCa risk for pairs of SNPs
implicated in Aim 2 among the remaining 1,893 cases and 781 controls in CAPS

Step by step method and expected results

1) (Months 21-24) Genotype 125 SNPs among 1,893 cases and 781 controls in CAPS using
IPLEX of Sequenom.

2) (Months 25-28) Analyze data using logistic regression and BEAM methods to remove false
positives identified in Aim 1 and obtain a smaller subset of SNPs that most likely represents true
interaction for further confirmation in larger samples.

Outcome and deliverables

We will use a stringent genome-wide significance level from the joint analysis (P < 10®) to
declare significant interaction. In fact, considering that 12 genome-wide associations were
performed, it is more conservative to use the cutoff of P < 10°. The actual number of SNPs
whose interactions meet the criteria depends on the number of true interactions in the genome
with the OR detectable in our study.



Aim 4. Fine map the genomic regions where SNPs have been confirmed to have strong gene-
gene interaction effect on PCa risk among all 2,893 cases and 1,781 controls in CAPS

Step by step method and expected results

1) (Months 29-30) Functional SNPs and tagging SNPs will be selected in the genomic region for
each of the SNPs implicated in Aim 3.

2) (Months 29-30) Selected SNPs will be genotyped in 2,893 cases and 1,781 controls of CAPS
using iIPLEX of Sequenom.

3) (Months 31-36) Fine mapping data analysis will be performed to identify the most strongly
associated SNPs (interaction effect) in each of the regions implicated in Aim 3.

Additional statistical analysis on gene-gene interaction (month 37- 48, non-cost extension).
We received approval from DOD to perform additional gene-gene interaction analysis based on
novel statistical approaches developed recently, which were not originally proposed in the study.

Detailed report

Study design modification. In our initial report, we proposed to conduct a genome-wide search in the
CGEMS population and follow the top hits in an additional two study populations (CAPS and JHH).
During year 3, we were able to obtain access to the GWAS data for the CAPS and JHH
populations. Therefore, we also conducted a genome-wide search for SNPs that interact with the 32
risk SNPs using CAPS and JHH populations. We also performed a meta-analysis and a fine-
mapping study based on the GWAS data of the three populations. Compared with our original study
design, the new design greatly improved our statistical power to detect SNP-SNP interactions. For
example, we were only able to detect a relatively large effect (OR>1.7) based on our initial design of
using 1,176 cases and 1,101 controls from the CGEMS study. However, we were able to detect a
modest to large effect of interaction (OR>1.3) using a total of 4,723 PCa cases and 4,792 controls
based on three GWAS populations.

Study populations. The first population was obtained from Stage 1 of the National Cancer Institute
Cancer Genetic Markers of Susceptibility (CGEMS) study. It included 1,176 PCa cases and 1,101
control subjects, selected from the Prostate, Lung, Colon and Ovarian (PLCO) Cancer Screening
Trial. The genotype and phenotype data of the study are publicly available and our use of the data
was approved by CGEMS.

The second GWAS population included 1,583 prostate cancer patients and 519 control subjects that
matched the age distribution of case subjects from CAPS, a population-based PCa case-control
study from Sweden (CAPS). Briefly, the CAPS population was recruited from four regional cancer
registries in Sweden and diagnosed between July 2001 and October 2003. The clinical
characteristics of these patients are presented in Supplementary Table 1.

The third population was from a Johns Hopkins Hospital (JHH) PCa GWAS which included 1,964
PCa cases and 3,172 control subjects. The cases are Caucasian PCa patients who underwent
radical prostatectomy for the treatment of PCa at JHH from January 1, 1999, through December 31,
2008 [1]. The clinical characteristics of these patients are presented in Supplementary Table 2.
The control subjects for this population were an independent group of Caucasian individuals from
the Illlumina iControlDB (iControls) dataset (https://www.illumina.com/science/icontrodb.ilmn).




Genotype data, imputation, and quality control. GWAS of the CAPS population was performed using
Affymetrix 5.0 chip. GWAS of the JHH case population was performed using the Illlumina 610K chip.
GWAS of the iControls population was performed using lllumina Hap300 and Hap550 Chips.
GWAS of the CGEMS population was performed using HumanHap300 and HumanHap240 assays
from Illumina Corp.

For each GWAS population, we imputed all the known SNPs that are catalogued in HapMap Phase
II (www.hapmap.org) using the IMPUTE computer program [2] with a posterior probability of 0.9 as
a threshold to call genotypes. Individuals with a call rate below 0.95 were removed from GWAS
analysis. The following quality control criteria were used to filter SNPs: MAF < 0.01, HWE < 0.001
and call rate < 0.95.

Prostate cancer known risk SNPs identified from GWAS. The 33 PCa known risk-associated SNPs
were discovered by GWAS and the following fine-mapping studies, with P- values equal or smaller
than of 10E-7 [3-17]. The detailed information for the 33 risk SNPs are presented in Table 1. The
SNP rs16901979 was not evaluated in the following interaction analysis due to the unavailability of
imputation of this SNP since it was not catalogued in the HapMap database.

Statistical analysis.

Part A: Identify SNPs that interact with 32 known PCa risk variants.

Multiplicative interactions between each one of the 32 known PCa risk variants and each SNP in the
genome were systematically tested by including both SNPs and an interaction term (product of two
SNPs), as implemented in the computer program PLINK[18]. Ancestral proportions obtained based
on EIGENSOFT software [19]were included as covariates to minimize the impact of potential
population stratification in the JHH population. An additive genetic model was used, where the
genotypes were coded as 0,1, and 2 and each SNP was treated as a continuous variable. The
interaction term was tested using a Wald test, with degree of freedom of 1. A meta-analysis of the
interaction term for the three study populations was performed using the method developed by
Manning et al [20] . Briefly, the meta-OR (ORy) of the interaction term across the three populations
was estimated using an inverse-variance weighted meta-analysis where

I(OR, )=, (w,In(OR)/Y, w,). w,=1/var(In(OR,)) and
se(In(OR,,)) = [Z; (1/var(In(OR.))]"*.(20)

Part B: Identify SNP-SNP interaction that without main effects using a novel statistical
method of BOOST

We implemented the Boolean Operation-based Screening and Testing (BOOST) approach to
identify gene-gene interaction on the genome-wide scale [21]. BOOST utilizes log-linear model to
evaluate a two-locus interaction, which is much faster than the logistic model since it does not
require iteration. It has been shown that using Log-linear model is equivalent with the logistic model
[21]. Since there are three genotypes for each SNP, a 3x3x2 contingency table was constructed to
test the interaction effect of SNP pair (Xp,Xg). The log-linear models for the homogeneous
association model (My) with main effect terms and the saturated model (Ms) with interaction term

are as following:
Y
My, loguy, = A+ X7 + A0 + A + A7+ A0 + AL

M :loguy, = A+ 24" + A + A + A7+ 40 + A0 + A

ik



where ujcis the mean of the cell count of the contingency table corresponding to SNP Xp and Xq
and disease status Y, A is the overall mean of the natural log of the expected frequencies, and Ls
are the corresponding effects which SNPs and disease status have on the cell frequencies. Here

}L;Z”X"Y measures the gene-gene interaction and is the term of interest. If we use Ly and Ls to denote

the log-likelihood of My and Ms. The significance of interaction term is tested by the difference of
the maximum likelihood estimations: Ls— L.

A two-stage approach was then implemented to improve the computation efficiency while keeping
the interactions in check. In the screening stage, BOOST transformed the genotype data into
Boolean values and stored it into a contingency table. The difference of maximum likelihood
estimation (MLE) of these two models was used to test interaction significance of a SNP pair. To
overcome the computation difficulty that there is no close form estimate of MLE, BOOST
approximates the likelihood ratio statistics L for the homogeneous association model using
Kirkwood superposition approximation (KSA). Because Ls— Lksa is an upper bound of Ls— Ly, this
method filters out most non-significant interactions but also guarantees survival of significant ones.
A SNP pair would be removed from consideration if the difference of MLE between these two
models (2(Ls— Lksa)) is less than a specified threshold t. In our analysis, we set t to be 43 for
CGEMS and 9.49 for the confirmation population (JHH), respectively. This corresponds to an
unadjusted Pinteraction Of 1E-08, and a Pineraciion Of 0.05, respectively. In the testing stage, likelihood
ratio test statistics 2(Ls— L) was used to test the interaction of remaining SNP pairs. The test
statistic is evaluated by a y? test with four degrees of freedom. The Pineraciion can be further adjusted
by Bonferroni correction, if needed. Ancestral proportions obtained based on EIGENSOFT software
[19] were included as covariates to minimize the impact of potential population stratification in the
JHH population. No age adjustment was performed due to the incomplete information in the
iControls.

Results

Part A: Identify SNPs that interact with 32 known PCa risk variants.

After imputation and applying quality control (QC) criteria, 1,314,700, 1,646,196, and 1,757,946
SNPs remained for CAPS, JHH, and CGEMS studies, respectively. A total of 1,117,531 common
SNPs for those three populations were used in the interaction analysis.

We examined the inflation factor and the quantile-quantile plots for interaction tests in the combined

analysis of three populations. No systematic bias was observed, as the inflation factors for the 32
GWAS scans for SNP-SNP interactions ranged from 0.98 to 1.03 (Supplementary Table 3).

Table 1. Reported SNPs associated with Prostate Cancer

Cytogenetic m/M Risk

CHR SNPs bands Position Known genes allele allele
2 rs1465618 2p21 43,407,453 THADA A/G A
2 rs721048 2p15 62,985,235 EHBP1 A/G A
2 rs12621278 2g31.1 173,019,799 ITGA6 G/A A



3 rs2660753 3p12 87,193,364 -- T/C T
3 rs10934853 3g21.3 129,521,063 EEFSEC A/C A
4 rs17021918 4922.3 95,781,900 PDLIM5 T/C C
4 rs7679673 4924 106,280,983 TET2 A/C C
6 rs9364554 625 160,753,654 SLC22A3 T/C T
7 rs10486567 7p15 27,943,088 JAZF1 A/G G
7 rs6465657 7921 97,654,263 LMTK2 T/C C
8 rs2928679 8p21.2 23,494,920 SLC25A37 A/G A
8 rs1512268 8p21.2 23,582,408 NKX3.1 T/C T
8 rs10086908 8924 (5) 128,081,119 -- c/T T
8 rs16901979 8024 (2) 128,194,098 -- A/C A
8 rs16902094 8q24.21 128,389,528 -- N/A G
8 rs620861 8024 (4) 128,404,855 -- A/G G
8 rs6983267 8024 (3) 128,482,487 -- G/T G
8 rs1447295 8024 (1) 128,554,220 -- A/C A
9 rs1571801 9g33 123,467,194 DAB2IC G/A A
10  rs10993994 10ql11 51,219,502 MSMB T/C T
10 rs4962416 10926 126,686,862 CTBP2 c/T C
11 rs7127900 11p15.5 2,190,150 IGF2, IGF2AS, INS, TH G/A A
11 rs12418451 11913 (2) 68,691,995 -- A/G A
11 rs10896449 11913 (1) 68,751,243 MYEOV A/G G
17  rs11649743 17912 (2) 33,149,092 HNF1B A/G G
17 rs4430796 17912 (1) 33,172,153 HNF1B A/G A
17 rs1859962 17q24.3 66,620,348 -- G/T G
19 rs8102476 19q13.2 43,427,453 PPP1R14A T/C C
19 rs887391 19913 46,677,464 -- c/T T
19 rs2735839 19913 56,056,435 KLK3 A/G G
22 rs9623117 New 22q13 38,782,065 TNRC6B c/T C
22 rs5759167 New 22q13.2 41,830,156 TTLL1, BIK, MCAT, PACSIN2 T/G G
23 rs5945619 Xpll 51,258,412 NUDT10, NUDT11, LOC340602 c/T C

Abbreviation: Chr, chromosome; BP: Base pair position is based on NCBI build 36. m/M denotes minor allele/ major
allele.

The results for the top ranked SNPs that interacted with each of the 32 known PCa-risk SNPs
(Pinteraction <1.0E-05 in the meta-analysis) were presented in Supplementary Table 4. For SNPs in
linkage disequilibrium (LD) (as defined by r2>0.5), only the one with the smallest P -value based on
meta-analysis was included in the Supplementary Table 4. We then further examined the interaction
effects for the top ranked SNPS (Pinteraction <1LE-05) in each of the three populations. SNPs that
significantly interacted with the 32 SNPs in all three populations at a nominal Pinteraciion Of 0.05 were
presented in Table 2. No SNP-SNP interaction reached a genome-wide significant level of 1.5E-09
(0.05/(1e+6*32). The most significant interaction was observed between rs12418451 in the MYEOV
gene region and rs784411 in the intron of CEP152, with a Pinteraction Of 1.15E-07 (ORinteraction= 1.42;
95% CI: 1.25-1.61) in the meta-analysis. This interaction pair was significant in all three populations
and the effects of the interaction were in the same direction (Pinteraction = 0.008, ORinteraction =1.55
(95% Cl: 1.12-2.16) for CAPS; Pineraction = 0.005, ORinteraction = 1.34 (95% Cl: 1.14-1.58) for JHH; and
Pinteraction = 0.001, ORjnteraction = 1.53 (95% CI = 1.18-1.99) in CGEMS, respectively) (Table 2).



Among the other 34 pairs of interactions that were significant at a Pinteraction Cutoff of 1E-05 in the
meta-analysis, two pairs were noteworthy to be emphasized when considering possible biological
function. The first pair involved an interaction between rs7127900 at IGF2/IGF2AS region and
rs12628051 in the intron of TNRC6B, with a Pinteraction Of 3.39E-06 (ORinteraction = 1.30, 95% CI =
1.17-1.46) (Table 2). The interaction was significant in all three populations and the effects of the
interaction were in the same direction (Pinteraction = 0.002, OR interaction= 1.50, 95 % Cl = 1.16-1.93 in
CAPS; Pinteraction = 0.006, ORinteraction = 1.24, 95 % CIl = 1.06-1.44 in JHH; Pinteraction = 0.014,
ORinteraction = 1.32, 95 % CI = 1.06-1.65 in CGEMS). The 2" pair of interaction was between
rs7679763 in TET2 gene region and rs290258 in the promoter region of SYK, with a Pinteraction Of
1.49E-06 (OR =0.75, 95% CI = 0.67-0.84) (Table 2). Similarly, the interaction effect was
consistently observed in all three populations with the same direction of interaction effect (Pinteraction
= 0.002, ORinteraciion = 0.66, 95 % Cl = 0.51-0.86 in CAPS; Pinteraction = 0.003, OR interaction= 0.78, 95 %
Cl = 0.67-0.92 in JHH; Pinteraction = 0.014, ORjnteraction = 0.75, 95 % CI = 0.59-0.94 in CGEMS).

Part B: Identify SNP-SNP interaction that without main effects using a novel statistical
method of BOOST

After applying the quality control (QC) criteria, there were 509,916 SNPs remained in the analysis in
the CGEMS GWAS population. A total of 1,325 pairs of SNP-SNP interactions reached a Pinteraction
cutoff of 1.0E-08. None of the SNP pairs reached a genome-wide significant level of 4.4E-13, if
considering 1.25 x 10** statistical tests. Specifically, 17 pairs of SNP-SNP interaction were found to
be significant at a Pinteraciion cutoff of 1.0E-10, and 131 pairs were significant at a Pinteraction Cutoff of
1.0E-09. The most significant hit was observed between rs1178517 located on CNTN4 gene at
chromosome 3 and rs1355096 located on FAM173B gene at chromosome 5, with a Pinteraction Of
2.3E-11.

We then examined the interaction effects for the top list of SNP-SNP interactions in another
independent GWAS population of JHH. Among the 1,325 pairs of SNP-SNP interactions that were
significant at a Pjnteraciion Of 1.0E-08 in CGEMS, 96 pairs of SNP-SNP interactions were significant at
a nominal Pinteraciion Of 0.05 in JHH. Sixteen pairs of SNP-SNP interactions were significant at a more
stringent Pinteraciion CUtoff of 0.01 (Table 3). However, no SNP pairs reached a Bonferroni corrected
Pinteraction 0f 3.8E-05 in JHH population (0.05/1,325).

Among the 16 SNP-SNP interactions that reached the significance level at Pinteraciion < 1.0E-08 for
the CGEMS population and Pinteraction < 0.01 for the JHH population, three were found between
SNPs that are both located within the intragenic regions, seven between an intragenic SNP and an
intergenic SNP, and six between SNPs both located in intergenic regions. Two interactions
deserved to be emphasized because they involve two cancer-related genes. One interaction
(Pinteraction = 5.3E-09 for CGEMS and 1.9E-03 for JHH) was between rs7514217 (within the intron of
PDPN at 1p36) and rs7934426 (intergenic, at 11p12). The second pair of interaction was between
rs11980379, located within the 3'UTR of IKZF1 at 7p12.2, was found to interact with intergenic
rs4314028 at 2p16.3 (Pinteraciion = 5.6E-09 and 3.4E-03, respectively (Table 3)



Table 2. Results for top SNPs that interact with the known PCa-risk SNPs (Pipteraction <1.0E-05 in the meta-analysis, and Pjpteraction <0.05 in each of the three populations)

SNP 1 SNP 2 Meta- results CAPS JHH CGEMS
Minor Relative
CHR SNP Gene CHR SNP Allele Gene Location Position P OR P OR P OR P OR

2 rs1465618 THADA 4 rs11735008 393,303 G ABCA11P Intergenic 15,921 6.65E-06  0.76(0.68-0.86) 5.04E-03  0.69(0.54-0.90) 3.11E-02  0.83(0.71-0.98) 1.35E-03  0.69(0.55-0.86)
13 rs9567349 43,535,405 G NCRNA00284  Intergenic 32,806 3.93E-06  0.61(0.49-0.75) 4.57E-04  0.41(0.25-0.67) 3.24E-02  0.72(0.54-0.97) 3.97E-03  0.57(0.39-0.84)

3 rs10934853 EEFSEC 9 rs7847271 116,870,633 A TNC Intron 3.85E-06  0.67(0.56-0.79) 7.73E-03  0.60(0.41-0.87) 2.56E-03  0.68(0.54-0.88) 1.87E-02  0.69(0.50-0.94)
18 rs998124 40,979,660 G MIR4319 Intergenic 175:531 5.21E-06  1.33(1.18-1.51) 3.56E-02  1.39(1.02-1.88) 3.64E-03  1.28(1.08-1.51) 3.56E-03  1.42(1.12-1.80)

4 rs17021918 PDLIM5 3 rs9757252 86,977,168 T VGLL3 Intergenic 92,645 4.73E-06  1.25(1.13-1.37) 8.45E-03  1.35(1.08-1.69) 2.23E-03  1.22(1.07-1.38) 2.16E-02  1.24(1.03-1.50)
4 rs7679673 TET2 9 rs290258 92,595,560 G SYK Intergenic -8,273 1.49E-06  0.75(0.67-0.84) 2.11E-03  0.66(0.51-0.86) 3.01E-03  0.78(0.67-0.92) 1.39E-02  0.75(0.59-0.94)
22 rs5751168 21,175,240 T ZNF280B Intron 4.11E-06  1.44(1.23-1.67) 4.75E-05  2.19(1.50-3.19) 3.38E-02  1.25(1.02-1.53) 9.09E-03  1.48(1.10-1.99)

7 rs10486567 JAZF1 3 rs1795355 41,574,530 T ULK4 Intron 9.46E-06  0.79(0.71-0.88) 3.37E-02  0.77(0.60-0.98) 9.11E-03  0.83(0.72-0.95) 2.14E-03  0.73(0.60-0.89)
3 rs11720607 174,325,971 G SPATA16 Intron 4.87E-06  0.73(0.63-0.83) 2.45E-03  0.62(0.45-0.84) 2.34E-03  0.75(0.62-0.90) 5.43E-02  0.77(0.58-1.00)

7 rs6465657 LMTK2 16 rs8057939 47,951,777 ¢ Cl6orf78 Intergenic ~ -13,532 4.71E-06  1.37(1.20-1.57) 3.31E-02  1.43(1.03-1.98) 1.03E-03  1.36(1.13-1.63) 1.70E-02  1.36(1.06-1.75)
8 rs10086908 6 rs10456809 17,921,804 T KIF13A Intron 4.83E-06  1.25(1.14-1.38) 1.30E-02  1.31(1.06-1.62) 2.28E-03  1.23(1.08-1.40) 1.69E-02  1.26(1.04-1.52)
8 rs1447295 NA 7 rs7789197 40,931,652 A INHBA Intergenic 763,474 3.36E-06  0.66(0.56-0.79) 2.57E-03  0.55(0.38-0.81) 7.27E-03  0.72(0.56-0.91) 1.06E-02  0.66(0.48-0.91)
9 rs12682851 8,002,418 G C9orf123 Intergenic 212:619 1.53E-06  0.72(0.63-0.82) 9.66E-03  0.67(0.50-0.91) 2.15E-03  0.75(0.62-0.90) 6.56E-03  0.70(0.54-0.90)

10 rs10885582 116,317,540 T ABLIM1 Intron 3.70E-06  0.73(0.63-0.83) 9.33E-05  0.54(0.39-0.73) 1.27E-02  0.79(0.66-0.95) 3.46E-02  0.75(0.57-0.98)

8 rs6983267 NA 6 rs1011119 19,972,144 G ID4 Intergenic 23,250 7.20E-06  0.81(0.74-0.89) 1.45E-02  0.76(0.61-0.95) 2.85E-03  0.83(0.74-0.94) 1.58E-02  0.80(0.67-0.96)
9 rs1571801 DAB2IC 8 rs2219968 79,119,213 A PKIA Intergenic 471:678 6.07E-07 1.30(1.17-1.43) 1.18E-02 1.35(1.07-1.70) 1.64E-04 1.30(1.14-1.50) 3.17E-02 1.24(1.02-1.52)
8 rs13264970 83,236,384 C SNX16 Intergenic 319:308 3.53E-06  0.77(0.69-0.86) 1.50E-02  0.74(0.59-0.94) 5.02E-03  0.80(0.68-0.93) 3.92E-03  0.72(0.58-0.90)

10 rs1547851 92,364,806 T HTR7 Intergenic 125,750 7.45E-06  1.59(1.30-1.95) 2.72E-03  1.98(1.27-3.09) 7.35E-03  1.49(1.11-1.99) 2.42E-02  1.52(1.06-2.20)

10 rs4962416 CTBP2 5 rs10940579 57,166,575 C ACTBL2 Intergenic 352:182 3.81E-06 1.32(1.18-1.49) 4.85E-02 1.36(1.00-1.84) 1.77E-03 1.29(1.10-1.51) 4.74E-03 1.39(1.10-1.74)
11 rs10896449 MYEOV 12 rs17354197 88,169,501 T DUSP6 Intergenic 96,467 8.82E-06  1.41(1.21-1.64) 3.97E-02  1.49(1.02-2.18) 2.35E-03  1.37(1.12-1.67) 1.10E-02  1.45(1.09-1.92)
11 rs12418451 MYEOV 3 rs10513723 176,062,702 A NAALADL2 Intron 5.61E-06 1.41(1.21-1.63) 7.22E-03 1.58(1.13-2.21) 1.61E-02 1.27(1.05-1.54) 1.46E-03 1.64(1.21-2.22)
8 rs7829048 4,689,690 C CSMD1 Intron 9.76E-06  0.74(0.65-0.85) 1.22E-02  0.68(0.50-0.92) 4.52E-02  0.84(0.71-1.00) 1.81E-04  0.60(0.46-0.78)

15 rs784411 46,827,089 C CEP152 Intron 1.15E-07 1.42(1.25-1.61) 8.83E-03 1.55(1.12-2.16) 5.28E-04 1.34(1.14-1.58) 1.32E-03 1.53(1.18-1.99)

11 rs7127900 I(IS(::ZZAS 8 rs13258681 124,783,903 C ANXA13 Intron 3.65E-06  1.32(1.17-1.48) 4.58E-02  1.32(1.01-1.73) 5.43E-04  1.33(1.13-1.56) 1.90E-02  1.31(1.05-1.64)
INS, TH 22 rs12628051 38,984,222 C TNRC6B Intron 3.39E-06  1.30(1.17-1.46) 1.82E-03  1.50(1.16-1.93) 6.14E-03  1.24(1.06-1.44) 1.44E-02  1.32(1.06-1.65)

17 rs4430796 HNF1B 1 rs731174 37,969,428 C EPHA10 Intron 4.55E-06  1.27(1.15-1.40) 5.03E-02  1.24(1.00-1.54) 3.20E-02  1.18(1.01-1.38) 1.13E-04  1.41(1.19-1.68)
2 rs12694942 158,518,681 T UPP2 Intergenic ~ -41,256 7.84E-06  0.80(0.73-0.88) 5.22E-03  0.75(0.61-0.92) 1.87E-03  0.79(0.68-0.92) 6.36E-02  0.85(0.72-1.01)

9 rs10812303 25,712,117 T TUSC1 Intergenic ~ -43,261 5.59E-06  1.34(1.18-1.52) 6.63E-03  1.46(1.11-1.91) 7.57E-03  1.27(1.07-1.52) 9.01E-03  1.37(1.08-1.73)

17 rs1859962 NA 2 rs16867225 180,749,531 A cwez2 Intergenic 169:506 3.12E-06  0.64(0.53-0.77) 1.33E-03  0.48(0.30-0.75) 4.80E-03  0.70(0.54-0.90) 1.84E-02  0.65(0.45-0.93)
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7 rs10277209 108,790,810 C C7orf66 Intergenic 478,937 3.81E-06  1.36(1.19-1.55) 4.08E-02  1.39(1.01-1.89) 4.04E-03  1.29(1.08-1.53) 1.55E-03  1.52(1.17-1.97)
19 rs2735839 KLK3 20 rs6089829 61,139,481 A LOC63930 Intron 3.21E-06  0.74(0.65-0.84) 2.53E-02  0.71(0.52-0.96) 1.26E-03  0.75(0.64-0.90) 1.10E-02  0.72(0.56-0.93)
19 rs8102476 PPPIR14A 1 rs1866967 29,958,249 G PTPRU Intergenic 432,337 5.16E-06  0.82(0.75-0.89) 2.70E-02  0.79(0.64-0.97) 5.10E-03  0.85(0.75-0.95) 2.97E-03  0.78(0.66-0.92)
19 rs887391 NA 4 rs735172 5,809,770 C EVC Intron 2.03E-06  1.31(1.17-1.46) 6.58E-03  1.43(1.10-1.85) 2.37E-03  1.27(1.09-1.47) 1.02E-02  1.32(1.07-1.63)
5 rs4463179 13,558,432 A DNAH5 Intergenic 185,005 2.22E-06  0.64(0.53-0.77) 3.00E-02  0.64(0.42-0.96) 8.35E-05  0.59(0.46-0.77) 8.28E-02  0.73(0.51-1.04)
22 rs9623117 TNRC6B 4 rs1713511 43,472,127 A KCTD8 Intergenic 398,550 7.87E-06  1.31(1.16-1.47) 4.94E-03  1.54(1.14-2.09) 6.71E-03  1.23(1.06-1.44) 1.06E-02  1.36(1.07-1.72)

Abbreviations: SNP1 indicate the 32 known PCa-risk SNPs. SNP 2 indicates the interacting SNPs; Chr, chromosome; Relative position is the distance of SNP2 relative to the nearest gene if
SNP2 is located in the intergenic region; OR : Odds Ratio; P and OR are for the multiplicative interaction term. P and OR for the Meta-analysis are calculated based on a Cochran-Mantel-

Haenszel test. CAPS: PCa case-control study from Sweden; JHH: Johns Hopkins Hospital; CGEMS: the Cancer Genetic Markers of Susceptibility;
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Table 3. Results for top list of SNP-SNP interactions in the CGEMS and JHH populations (Pinteraction <1.0E-08 in CGEMS and P;yteraction <0.01 in JHH).

SNP_A SNP B Interaction Annotation for SNP A Annotation for SNP B

Main Main Relative Relative
Study rsID CHR BP Al MAF effect P rsID CHR BP Al MAF effect P BOOST P Location Gene Position Location  Gene Position
CGEMS rs7514217 1 13,795,386 G 0.42 0.75 rs7934426 11 37,270,065 G 0.46 0.38 5.3E-09 Intron PDPN Intergenic RAG2 -693,660
JHH G 0.45 0.16 G 0.44 0.37 1.9E-03
CGEMS rs2503220 1 66,272,145G 0.08 0.80 rs2579790 10 77,725,730 C 0.38 0.32 9.3E-09 Intron PDE4B Intron Cl10orf11
JHH G 0.08 0.75 c 0.39 0.23 3.1E-03
CGEMS rs13402702 2 29,033,906 G 0.2 0.05 rs7329899 13 105,276,784 A 0.26 0.99 6.4E-09 Intergenic SNORD53 30,394 Intergenic DAOA 335,400
JHH G 0.18 0.15 A 0.25 0.33 9.0E-03
CGEMS  rs4314028 2 51,990,169 C 0.25 0.41 rs11980379 7 50,437,475 C 0.26 0.49 5.6E-09 Intergenic CHAC2 -1,858,264 3'UTR IKZF1
JHH C 0.26 0.99 C 0.26 0.18 3.4E-03
CGEMS rs4314028 2 51,990,169 C 0.25 0.41 rs4132601 7 50,438,098 G 0.26 0.51 3.4E-09 Intergenic CHAC2 -1,858,264 3'UTR IKZF1
JHH C 0.26 0.99 G 0.26 0.14 5.1E-03
CGEMS rs4664789 2 156,575,782 C 0.49 0.97 rs8019172 14 51,715,669 A 0.1 0.48 8.8E-09 Intergenic NR4A2 313,408 Intergenic PTGDR -88,512
JHH A 0.49 0.17 A 0.1 0.35 5.8E-03
CGEMS rs4973194 2 229,945,721 G 0.37 0.49 rs1949403 3 6,070,643 C 0.28 0.26 9.4E-09 Intron DNER Intergenic EDEM1 833,993
JHH G 0.36 0.91 C 0.27 0.65 8.9E-03
CGEMS rs6772801 3 140,979,161 G 0.29 0.16 rs6955437 7 137,547,448 T 0.11 0.77 3.9E-09 Intergenic NMNAT3 -99,631 Intergenic AKR1D1 93,858
JHH G 0.27 3.3E-04 T 0.09 0.31 8.9E-03
CGEMS rs6878100 5 129,370,204 A 0.33 0.77 rs2960753 7 141,386,546 T 0.4 0.47 3.6E-09 Intron CHSY3 Intron MGAM
JHH A 0.33 0.44 T 0.39 0.39 9.7E-03
CGEMS rs6948622 7 145,043,041 A 0.36 0.85 rs1154140 14 40,456,756 G 0.3 0.23 8.2E-09 Intergenic TPK1 -878,962 Intergenic LRFN5 -689,758
JHH A 0.34 0.28 G 0.32 0.14 9.2E-03
CGEMS rs12682543 8 29,135,477 G 0.34 0.04 rs11231168 11 62,158,196 T 0.42 0.23 2.2E-09 Intron KIF13B Intron GANAB
JHH G 0.32 0.12 T 0.4 0.34 4.7E-03
CGEMS rs10810961 9 18,361,966 G 0.10 0.11 rs643853 21 43,656,244 A 0.18 0.05 3.7E-09 Intergenic MIR3152 -201,338 Intergenic SIK1 2,583
JHH G 0.11 0.26 A 0.21 0.22 5.2E-03
CGEMS rs4837960 9 124,163,792 T 0.15 0.98 rs275769 12 123,687,425 T 0.31 0.45 9.8E-09 Intergenic PTGS1 -9,258 Intergenic SCARB1 140,702
JHH T 0.14 0.45 T 0.3 0.24 8.9E-03
CGEMS rs1038972 10 31,243,098 T 0.11 0.17 rs2022896 14 27,074,470 A 0.24 0.65 4.2E-09 Intron ZNF438 Intergenic MIR4307 626,699
JHH T 0.12 0.33 A 0.25 0.70 7.8E-03
CGEMS rs12861843 13 35,638,422 C 0.42 0.06 rs3862743 13 41,208,633 C 0.39 0.34 4.1E-09 Intergenic SOHLH2 1,923 Intron KIAAO0564
JHH C 0.45 0.91 C 0.4 0.28 3.2E-03
CGEMS rs2136267 13 107,332,783 T 0.25 0.37 rs1884393 20 1,404,079 A 0.11 0.46 9.3E-09 Intergenic LIG4 325,010 3'UTR SIRPB2
JHH T 0.27 0.33 A 0.11 0.95 6.5E-03

Abbreviations: SNP A indicates the first interacting SNP; SNP B indicates the second interacting SNP; .

CHR, chromosome; MAF, minor allele frequency;
Main effect P refers to the single-locus P-value based on the two-degree of freedom test; BOOST P refers to the P-values for the multiplicative interaction term, as calculated by BOOST

approach;

Relative position is the distance of SNPA/SNPB relative to the nearest gene if SNPA/SNPB is located in the intergenic region;
CGEMS: the Cancer Genetic Markers of Susceptibility; JHH: Johns Hopkins Hospital;



We then carefully examined the two-locus interaction pattern of the above two SNP pairs in CGEMS
and JHH populations. Figure 1a showed the odds ratios for the 9 combinations of the genotypes of
rs7514217 and rs7934426. Men who carried “GG/GG” double homozygotes for both SNPs had a
significantly decreased risk of developing PCa (OR = 0.56, 95% Cl= 0.34-0.91; P = 0.02) in CGEMS
compared with men who carried homozygous “A” allele (major allele) for both rs7514217 and
rs7934436 (reference group) (Figure 1a). A similar pattern of interaction was observed in JHH
population. Particularly, men who carry GG/GG genotypes also had a decreased risk of developing
PCa (OR = 0.51, 95% CI = 0.36-0.74; P = 4.0E-04, Figure 1b) compared with men who carried
homozygous “A” allele (major allele) for both of the SNPs. Figure 2a and 2b showed the interaction
pattern between rs11980379 and rs4314028 in CGEMS and JHH, respectively. Men who carried
the “TC/CC” genotype for rs11980379 and rs4314028 had a marginal significantly increased risk for
PCa (OR =1.86, 95% CI = 0.98-3.64; P = 0.05) in CGEMS, compared with men with homozygous
“T” allele (major allele) (Figure 2a). Similar in JHH, men who carry the “TC/CC” genotype
combination also had a significantly increased risk for PCa (OR = 1.83, 95% CI = 1.24-2.72; P =
2.1E-03) (Figure 2b). However, the interaction pattern was not consistent with a dominant model
since “TC/CC” genotype for rs11980379 and rs4314028 showed an increase in risk while the
“CC/CC” genotype shows a reduced risk (both compared to “ TT/TT" ) (Figure 2b).

Figure 1a
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QOdds ratio (95% confidence interval), and P-values for SNP pair of rs7514217 (column) and rs7934426
(row)

AA AG GG

AA 1.000 0.38 (0.27,0.54) 1.7E-08 0.82 (0.55,1.23) 0.36
AG 0.59 (0.42,0.83) 2.5E-3 0.72 (0.53,0.99) 0.05 0.49 (0.33,0.71) 2E-04
GG 0.43 (0.27,0.67) 3.0E-4 0.65 (0.44,0.95) 0.03 0.56 (0.34,0.91) 0.02

Figure 1a and 1b. Interaction between rs7514217 and rs7934426 in CGEMS (1a) and JHH
(1b). X-axis represent the genotype for rs7514217, Y-axis represent the genotype for
157934426, the Z-axis showed the odds ratio of the SNP pair (rs7514217 and rs7934426).
Odds ratios are estimated relative to the baseline AA/AA double homozygote.
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Figure 2b
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Odds ratio (95% confidence interval), and P-values for SNP pair of rs4314028 (column) and rs11980379
(row)
T TC cc
T 1.00 1.06 (0.90,1.25) 0.50 0.75 (0.52,1.06) 0.10
TC 1.08 (0.92,1.28) 0.34 1.07 (0.89,1.29) 0.48 1.83(1.24,2.72) 2.1E-03
cC 1.46 (1.06, 2.00) 0.02 1.07 (0.75,1.51) 0.73 0.73 (0.29,1.69) 0.57

Figure 2a and 2b. Interaction between rs11980379 and rs4314028 in CGEMS (2a) and JHH
(2b). X-axis represent the genotype for rs11980379, Y-axis represent the genotype for
rs4314028, the Z-axis showed the odds ratio of the SNP pair (rs11980379 and rs4314028).
Odds ratios are estimated relative to the baseline AA/AA double homozygote.

Discussion
Part A: Identify SNPs that interact with 32 known PCa risk variants.

To our knowledge, our study represents one of the first comprehensive gene-gene interaction scans
in three PCa GWAS populations. Specifically, we performed a genome-wide gene-gene interaction
scan for each of the 32 known prostate cancer risk-associated variants identified from genome-wide
association studies in three case-control populations of European descents, which includes a total
of 4,723 PCa cases and 4,792 controls. In the meta-analysis, we found 35 pairs of SNP-SNP
interactions that were significantly associated with PCa risk (Pinteraction <1LE-05). In addition, the
interactions for those 35 pairs were significant in all three populations (all Pinteraction <0.05). Among
those 35 pairs of statistically significant interactions, we emphasized three pairs of interactions with
potential biological implication, including an interaction between rs12418451 in MYEOV and
rs16961635 in CEP152, with a Pjnteraciion Of 1.15E-07 (OR = 1.42, 95 % Cl = 1.25-1.61), an
interaction between rs7127900 at IGF2/IGF2AS region and rs12628051 in the intron of TNRC6B,
with a Pinteraciion Of 3.39E-06 (OR = 1.30, 95% CI = 1.17-1.46), an interaction between rs7679763 in
TET2 gene region and rs290258 in the promoter region of SYK, with a Pinteraction Of 1.49E-06 (OR =
0.75, 95% Cl = 0.67-0.84).
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The discovery of approximately three dozen PCa risk variants using single SNP analysis suggests
that it is possible to detect individual risk variants. However, when the underlying genetic model
involves interaction of multiple genes, a single gene approach is less effective and may not be able
to explain the complex etiology of the disease. Therefore, evaluation of the joint effect (epistasis) of
multiple genetic variants is critical to understand the underlying causes of complex diseases [22],
especially in the situation where several individual risk variants have been identified. The next
question is to explore whether other SNPs interact with those SNPs to modify risk to PCa. The
identified loci that interact with the known PCa risk-associated SNPs may help to elucidate the
underlying molecular mechanisms of the associations of those risk SNPs.

The most significant interaction was seen between the PCa risk-associated SNPS rs12418451 and
rs784411. The SNP rs12418451 is located at the 11913.2 that is ~77kb upstream of TPCN2, a
putative cation-selective ion channel gene, and ~126kb upstream of MYEOV, an oncogene that has
been implicated in multiple cancers [23-27]. The SNP rs784411 resides in the intron of CEP152, a
centrosomal protein that was recently shown to function as a regulator of genomic integrity [28] and
cellular response to DNA damage[29]. Given the limited information, we speculate that observed
interaction may reflect the close collaboration of MYEOV (or TPCNZ2, even though it is less likely)
and CEP152 in the same or different oncogenic pathways that drive the tumorigenesis of prostatic
epithelial cells.

Among the two SNPs that were shown to consistently interact with the PCa risk-associated SNP
rs7127900 at 11p15.5, one SNP (rs12628051) is located within TNRC6B, which encodes a RNA
interference (RNAIi) machinery component protein crucial for the miRNA/siRNA-dependent
translational repression or degradation of target mMRNASs. It is worthy to mention that this gene also
contains a GWAS-identified PCa risk-associated SNP (rs9623117). Several mechanisms may
potentially explain for these interactions. Firstly, we noticed that at ~70 kb telomeric to rs7127900
reside the PCa-implicated IGF2 gene and its antisense transcript-encoding IGF2AS. IGF2 encodes
a member of the insulin family of polypeptide growth factors that promotes cell proliferation during
fetal development but becomes less active in healthy adults due to genomic imprinting.
Dysregulated overexpression of IGF2 caused by loss of imprinting (LOI) has been associated with a
variety of human cancers including PCa [30-33]. IGF2AS encodes a predictably non-coding RNA
that is antisense to IGF2 and thus may potentially regulate IGF2 expression through RNAi in a
similar manner as some other natural antisense transcripts. Thus one plausible scenario is that
TNRC6B may affect the RNAi-mediated transcriptional regulation of IGF2AS on IGF2, which may
underlie the observed interaction between genetic variants within these two loci. Secondly, there are
two microRNA (miRNA) genes located at 11p15.5, miR-4686 (~40kb from the PCa-risk SNP
rs7127900) and miR-483 (~80kb from rs7127900). Although the role of miR-4686 remains to be
determined, miR-483 has been demonstrated to act as an oncogene to suppress proapoptotic
BBC3 (PUMA) or tumor suppressive DPC4(Smad4) in a variety of human cancers[34,35]. Thus an
alternative mechanism for the observed interaction between the 11p15.5 locus and the TNRC6B
locus is that genetic variants in TNRC6B may affect the miR-483 (or miR4686)-mediated RNAI
toward its/their target tumor suppressor genes.

Another pair of interacting SNPs were found between rs7679673 (~ 6kb upstream of TET2) and
rs290258 (~8kb upstream of SYK). TET2 encodes an enzyme hydroxylating methylcytosine and is
implicated in epigenetic programming that involves DNA methylation and demethylation (Reviewed
in [36]). The critical role of TETZ2 in cancer is suggested by the observation that loss of function
mutations of TET2 are frequently identified in various hematologic malignancies[37,38]. As a non-
receptor Tyrosine protein kinase that mediates cellular proliferation and differentiation, SYK is
believed to function as a potential tumor suppressive gene (reviewed in [39]. It is noteworthy that
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hypermethylation of SYK gene promoter has been frequently found in and widely associated with
lung, gastric, and breast cancer [40,41]. Thus although it remains to be determined whether SYK
promoter in prostatic tumors also undergoes silencing via DNA methylation, the observed
interaction between TET2 and SYK suggests that it is a plausible hypothesis.

Two SNPs (rs731174 and rs10812303) were found to interact with the GWAS-identified PCa risk-
associated SNP rs4430796, residing within HNF1B, a homeodomain-containing transcription factor
whose expression alteration has been widely implicated in various human cancers including PCa.
The SNP rs731174 is located within the intron of EPHA10, a member of the EPH subfamily of
receptor tyrosine kinases (RTKs). This family of RTKs play an important role in cell-cell
communication regulating cell attachment, shape, and mobility in epithelial cells and are believed to
be implicated in carcinogenesis (reviewed in [42]. It is possible that HNF1Ba and EPHA10
collaborate in the signaling network that is crucial for the well-being of prostatic cells whereas the
genetic variants located within these two genes may synergistically contribute to the oncogenesis of
PCa. The other SNP rs10812303 is ~40kb upstream of TUSC1, an intronless gene that has been
suggested to serve as a tumor suppressor in lung tumorigenesis [43].Thus the interaction between
genetic variants in TUSC1 and HNF1B may also suggest a plausible collaboration of these two
genes.

In summary, our systematic evaluation of gene-gene interactions in three GWAS populations
suggested a list of loci interacting with known PCa risk-associated SNPs that may warrant follow-up
in other study populations. Three pairs of interactions are worthwhile to be emphasized, including
an interaction between rs12418451 in the MYEOV gene region and rs784411 in the intron of
CEP152, an interaction between rs7127900 in the IGF2/IGF2AS gene region and rs12628051 in the
intron of TNRCG6B, and an interaction between rs7679673 in the TET2 gene region and rs290258 in
the intron of SYK. Those results showed statistical evidence for genes interacting with known risk-
associated SNPs on PCa risk. The interacting loci identified also provide more hints on the
underlying molecular mechanism of the associations with PCa risk for the known risk-associated
SNPs.

Part B: Identify SNP-SNP interaction that without main effects using a novel statistical
method of BOOST

The SNP-SNP interactions revealed by our study involved loci with no evidence of main effect or
weak marginal effect. Previous studies also showed that all the SNPs that were implicated in the top
hits of interactions in Type 1 Diabetes and Type 2 Diabetes displayed weak main effects [44,45].
Culverhouse et al. also reported large interaction effects in the complete absence of marginal effect
[46]. Thus these findings, combined with ours, highlight the need for exhaustive search when
evaluating epistasis in a genome-wide scale. To reduce the computation burden, many methods
have been developed with pre-screening algorithms built in [22,47,48]. However, most of the pre-
screening algorithms are based on evaluating the marginal effects of single-locus. The SNPs with
weak or no marginal effects but with significant interaction effects will be screened out based on
such algorithms. In contrast, BOOST was able to evaluate all pair-wise interactions on the genome-
wide scale with a relatively fast speed, which allows for exhaustive search of interaction effects
across the entire genome.

Specifically, we want to emphasize on two pairs of interactions implicated in our study because they
involve two cancer-related genes. One interaction was between rs7514217 (within the intron of
PDPN at 1p36) and rs7934426 (intergenic, at 11p12). PDPN encodes a mucin-type transmembrane
glycoprotein (podoplanin) that reportedly plays diverse functions including regulating actin
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cytoskeleton organization and cell migration[49,50], inducing platelet aggregation[51], and
modulating lymphatic vasculature formation[52]. The crucial role of PDPN in tumorigenesis is
indicated by the observations that PDPN is frequently overexpressed in various human cancer
types[53-56], and that podoplanin facilitates tumor cell migration and invasion [57] and promotes
lymphangiogenesis and lymph node metastasis[58]. Expression of PDPN was also reported in
prostatic tumors [59], suggesting a role in PCa as well.

The second pair of interaction was between rs11980379, located within the 3'UTR of IKZF1 at
7pl2.2, and rs4314028, located on an intergenic region at 2p16.3. IKZF1 encodes a lkaros family
zinc finger transcription factor that normally directs hematopoietic lineage commitment and pituitary
neuroendocrine cell expansion by regulating differentiation, proliferation, and apoptosis of these cell
lineages[60,61]. IKZF1 is considered a hematological and pituitary tumor suppressor such that
abnormalities in its splicing have been associated with leukemias[62] and pituitary tumors[63].
Recently expression of IKZF1 was also found in a variety of other human tissues including prostate
and was associated with prognosis of breast, lung, ovarian and skin cancers [64], suggesting a
potentially important role of IKZF1 in other cancer types such as PCa. However, given the “gene
desert” localizations of the partner SNPs that interact with these PDPN/ IKZF1-harbored SNPs, it is
hard to make biological inferences as what molecular mechanisms might account for these two
interactions. Nonetheless, as revealed by the ongoing ENCODE project and several genome-wide
cistrome studies on important transcription factors such as Forkhead box A1 (FOXA1)[65],
Androgen Receptor (AR) [65] and Estrogen Receptor (ER) [66], the DNA sequences whereby
certain functionally critical transcription factors bind and regulate expression of their target genes
are extensively localized throughout the genome, which sometimes are several hundred kbps away
from their target genes and may reside in intergenic regions (enhancers or suppressors). Thus it is
possible that these intergenic SNPs, or those in Linkage Disequilibrium (LD) with them, may lie
within the DNA sequences containing enhancer or suppressor activities that distantly regulate one
or several target genes. These genes may collaborate with PDPN/IKZF1 in a common signaling
network that combinatorially determines the well-being of prostatic epithelial cells. A certain
combination of genetic variants in these interacting intergenic and intragenic loci, though insufficient
by themselves alone, may cause the synthetic deficiency of the crucial signaling network and result
in explicitly increased risk for PCa. This enhancer/suppressor-involved mechanism may potentially
provide explanations for the remaining interactions as well, especially for the six interactions which
involve two intergenic SNPs. However, it should be pointed out these contemplations are largely
speculative and may require in-depth mechanistic and functional studies to prove.

In summary, we systematically evaluated genome-wide SNP-SNP interactions using a novel
statistical approach named BOOST. We identified 1,325 pairs of SNP-SNP interactions with a
Pinteraction Cutoff of 1.0E-08 in the discover population of CGEMS. Among the 1,325 pairs of
interactions, 16 pairs of interactions were also significant in an independent population from JHH, at
a Pinteraction cutoff of 0.01. Our study represents one of the first application studies which
implemented a novel statistical method of BOOST to detect interactions on a genome-wide scale.
The pairs of SNP-SNP interactions suggested in our study represent the first step towards obtaining
further biological insight into the high-dimensional etiology of prostate cancer.

KEY RESEARCH ACCOMPLISHMENTS

1) Completed a genome-wide search for SNPs that interact with the 32 known risk SNPs in the
CAPS population
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2) Completed a genome-wide search for SNPs that interact with the 32 known risk SNPs in the
JHH population

3) Completed a genome-wide search for SNPs that interact with the 32 known risk SNPs in the
CGEMS population

4) Completed a meta-analysis and a fine-mapping study of the three GWAS populations
(comprised of 4,723 PCa cases and 4,792 controls) to identify SNPs that interact with the 32
risk SNPs

5) Completed an exhaustive search of genome-wide SNP-SNP interactions using a novel
statistical approach of BOOST in the JHH and CGEMS populations

6) Published two manuscripts summarizing the key research findings of the funded project in
high-quality peer-reviewed journals

REPORTABLE OUTCOMES

A. SNPs that interacted with known PCa risk loci

1) Thirty-five pairs of SNP-SNP interactions were significantly associated with PCa risk (a
Pinteracion < 1E-05) in the meta-analysis. In addition, the interaction for those 35 pairs was
significant in all three populations (all Pinteraction < 0.05 in CGEMS, JHH, and CAPS) (see
Table 2).

2) The most significant interaction was detected between rs12418451 in MYEQV and
rs784411 in CEP152, with @ Pinteraciion Of 1.15E-07 in the meta-analysis of three populations
(Table 2).

3) Two additional pairs of interactions that were significant at a Pinteraciion < 0f 1E-05 in the
meta-analysis were biologically interesting, including an interaction between rs7127900 at
IGF2/IGF2AS region and rs12628051 in the intron of TNRC6B, with a pinteraction Of 3.39E-06
(OR =1.30, 95% CI = 1.17-1.46), and an interaction between rs7679763 in TET2 gene
region and rs290258 in the promoter region of SYK, with a pinteraction Of 1.49E-06 (OR =
0.75, 95% CIl = 0.67-0.84).

B. SNP-SNP interactions without main effects

1) Among the 1,325 pairs of SNP-SNP interactions with a Pjpteraciion CUtoff of 1.0E-08 in the
discovery population of CGEMS, 16 pairs of interactions were also significant in an
independent population from JHH, at a Pinteraciion Cutoff of 0.01. (Table 3)

2) Two interactions deserve to be emphasized because they involve two cancer-related
genes. One interaction (Pinteraction = 5.3E-09 for CGEMS and 1.9E-03 for JHH) was between
rs7514217 (within the intron of PDPN at 1p36) and rs7934426 (intergenic, at 11p12). The
second pair of interaction was between rs11980379, located within the 3'UTR of IKZF1 at
7pl12.2, was found to interact with intergenic rs4314028 at 2p16.3 (Pinteraction = 5.6E-09 and
3.4E-03, respectively. (Figure 1 and Figure 2)

CONCLUSION

1) We have achieved all the goals described in the approved statement of work.
2) We have identified and confirmed SNPs in the genome that significantly interact with the 32
known PCa risk SNPs in three study populations.
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3) The interacting loci identified provide more hints into the underlying molecular mechanism of
the associations with PCa risk for the known risk-associated SNPs.

4) We have also identified and confirmed SNP-SNP interactions without main effects which
confer increased risk for prostate cancer.

5) Our study represents the first step towards obtaining further biological insight into the high-
dimensional etiology of prostate cancer.

Published papers in the funded period (Supported by this grant)

1. Tao S, Wang Z, Feng J, Hsu FC, Jin G, Kin ST, Zhang Z, Gronberg H, Zheng, SL, Isaacs
WB, XU J, Sun J. A Genome-Wide Search for Loci Interacting with Known Prostate Cancer
Risk-Associated Genetic Variants. Carcinogenesis . 2012, 33(3):598-603.

2. Tao S, Feng J, Webster T, Jin G, Hsu FC, Chen SH, Zhang Z, Zheng, SL, Isaacs WB, Xu J,

Sun J. Genome-wide Two-Locus Epistasis Scan in Prostate Cancer Using Two European
Populations. Hum Genet. 2012 , 131(7):1225-34.
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Supplementary Table 1. Clinical and demographic characteristics of subjects in

CAPS
# (%) of cases # (%) of
Localized All cases controls
Characteristics Aggressive (N=686 ) (N=795) (N=1483) (N=519)
Age at enrollment (Year)
Mean (sd) 67.91(7.25) 64.59(6.55) 66.13(7.07) 67.24(7.35)
Age at disgnosis
<65 60.24(3.76)  59.55(3.66) 59.81(3.71) NA
> 65 72.5(4.35) 70.5(4.15) 71.6(4.38) NA
Family History (first-degree relatives)
No 569(82.94) 623(78.36) 1192(80.38) 466(89.79)
Yes 117(17.06) 172(21.64) 289(19.49) 53(10.21)
Missing data 0(0) 0(0) 2(.13) 0(0)
PSA levels at diagnosis for cases or at enrollment for controls (ng/ml)
<4 20(2.92) 98(12.33) 118(7.96) 413(79.58)
4-9.99 94(13.70) 430(54.08) 524(35.33) 81(15.61)
10-19.99 117(17.06) 188(23.65) 305(20.57) 20(3.85)
20-49.99 150(21.87) 72(9.06) 222(14.97) 4(.77)
50-99.99 128(18.66) 0(0) 128(8.63) 1(.19)
>100 172(25.07) 0(0) 172(11.60) 0(0)
Missing 5(.73) 7(.88) 14(.94) 0(0)
T-stage
TO 1(.13) 4(.5) 5(.34) NA
Tl 83(10.44) 470(59.12) 553(37.29) NA
T2 138(17.36) 316(39.75) 454(30.61) NA
T3 399(50.19) 0(0) 399(26.90) NA
T4 58(7.30) 0(0) 58(3.91) NA
TX 7(.88) 5(.63) 14(.94) NA
N-stage
NO 130(16.35) 123(15.47) 253(17.06) NA
N1 45(5.66) 0(0) 45(3.03) NA
NX 511(64.28) 672(84.53) 1185(79.90) NA
M-stage
MO 324(47.23) 298(37.48) 622(41.94) NA
Ml 159(23.18) 0(0) 159(10.72) NA
MX 203(29.59) 497(62.52) 702(47.34) NA
Gleason (biopsy)
<4 7(1.02) 0(0) 7(.47) NA
5 25(3.64) 1(.13) 26(1.75) NA
6 86(12.54) 791(99.50) 877(59.14) NA
7 218(31.78) 1(.13) 219(14.77) NA
8 156(22.74) 0(0) 156(10.52) NA
9 108(15.74) 0(0) 108(7.28) NA
10 13(1.90) 0(0) 13(.88) NA
Missing 73(10.64) 2(.25) 77(5.19) NA
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Supplementary Table 2. Clinical and demographic characteristics of subjects in JHH

# (%) of cases

Characteristics All cases (N=1,964)
Age at diagnosis (Year)
Mean (sd) 57.75 (6.81)
Missing 9

Age at diagnosis (Year)
<65 1704 (87.16)
> 65 251 (12.84)

PSA levels at diagnosis (ng/ml)

<4 310 (16.28)
4.01-9.99 1220 (64.08)
10-19.99 256 (13.45)
20-49.99 66 (3.47)
50-99.99 23 (1.21)
> 100 29 (1.52)
Missing 60
T-stage
T2 1247 (63.49)
T3a 454 (23.12)
T3b 105 (5.35)
T3c 12 (0.61)
T3X 7 (0.36)
T4 1 (0.05)
Missing 138 (7.03)
N-stage
NO 1782 (97.38)
N1 37 (2.02)
N2 1 (0.05)
NX 10 (0.55)
M-stage
MO NA
M1 NA
MX 1828

Gleason (biopsy)

<4 0
"5 41 (2.13)
"6 1118 (58.17)

7(3+4 or unspecific) 474 (24.66)

7(4+3) 133 (6.92)
"8 76 (3.95)
"9 74 (3.85)
"10 6 (0.31)

Missing 42

26



Supplementary Table 3. Inflation factor for the meta-analysis for 32 SNPs.

SNP1 N Obs Median_p Median_chisq Inflation
Factor

rs10086908 1117528 0.50 0.46 1.02
rs10486567 1117530 0.50 0.45 0.99
rs10896449 1117520 0.50 0.46 1.00
rs10934853 1117529 0.49 0.47 1.03
rs10993994 1117531 0.50 0.46 1.02
rs11649743 1117531 0.50 0.46 1.00
rs12418451 1117531 0.50 0.46 1.00
rs12621278 1117530 0.50 0.45 0.98
rs1447295 1117526 0.50 0.46 1.01
rs1465618 1117531 0.50 0.46 1.01
rs1512268 1117525 0.50 0.45 1.00
rs1571801 1117531 0.50 0.46 1.02
rs16901979 1117504 0.51 0.44 0.97
rs17021918 1117529 0.50 0.46 1.00
rs1859962 1117526 0.50 0.45 0.98
rs2660753 1117527 0.50 0.45 1.00
rs2735839 1117530 0.50 0.46 1.01
rs2928679 1117528 0.50 0.46 1.00
rs4430796 1117531 0.50 0.45 0.98
rs445114 1117531 0.50 0.46 1.01
rs4962416 1117530 0.50 0.47 1.02
rs5759167 1117531 0.50 0.46 1.01
rs5945619 1117527 0.50 0.45 1.00
rs6465657 1117522 0.50 0.46 1.02
rs6983267 1117530 0.50 0.46 1.01
rs7127900 1117531 0.50 0.46 1.01
rs721048 1117531 0.49 0.47 1.03
rs7679673 1117531 0.50 0.46 1.01
rs8102476 1117531 0.50 0.45 0.99
rs887391 1117530 0.50 0.46 1.01
rs9364554 1117531 0.50 0.45 0.99
rs9623117 1117531 0.50 0.45 0.98
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Supplementary Table 4. Results for top SNPs that interact with the known PCa-risk SNPs (p<1.0E-05 in meta-analysis)

SNP1

SNP2

Meta-results

CAPS

JHH

CGEMS

Minor

Relative

CHR SNP Gene CHR SNP Position Allele Gene Location Position P OR P OR P OR P OR
2 rs12621278 ITGA6 3 rs1002979 113980570 C CD200RIL Intergenic 36676 3.10E-06 0.63(0.52-0.76) 1.45E-01 0.72(0.46-1.12) 2.66E-04 0.61(0.46-0.79) 9.29E-03 0.62(0.43-0.89)
2 rs12621278 8 rs1402649 20900514 G LOC286114 Intergenic 3604 7.16E-06 1.58(1.29-1.92) 2.13E-01 1.33(0.85-2.10) 8.86E-05 1.74(1.32-2.29) 3.71E-02 1.48(1.02-2.14)
2 rs1465618 THADA 4 rs11735008 393303 G ABCA11P  Intergenic 15921 6.65E-06 0.76(0.68-0.86) 5.04E-03 0.69(0.54-0.90) 3.11E-02 0.83(0.71-0.98) 1.35E-03 0.69(0.55-0.86)
2 rs1465618 13 rs9567349 43535405 G NCRNA00284 Intergenic 32806 3.93E-06 0.61(0.49-0.75)  4.57E-04 0.41(0.25-0.67) 3.24E-02 0.72(0.54-0.97) 3.97E-03 0.57(0.39-0.84)
2 rs721048 EHBP1 1 rs3820259 239046585 c RGS7 Intron 9.54E-06 1.39(1.20-1.60) 4.40E-02 1.45(1.01-2.08) 9.81E-05 1.46(1.21-1.76) 1.95E-01 1.20(0.91-1.59)
2 rs721048 6 rs9348131 166770788 T RPS6KA2 Intron 6.11E-06 0.70(0.60-0.82) 2.45E-01 0.81(0.57-1.15) 6.83E-04 0.70(0.57-0.86) 3.19E-03 0.63(0.47-0.86)
2 rs721048 7 rs7809487 37110591 A ELMO1 Intron 6.05E-06 0.72(0.62-0.83)  2.65E-01 0.82(0.58-1.16) 1.35E-04 0.69(0.57-0.83) 2.03E-02 0.72(0.55-0.95)
2 rs721048 13 rs9546364 82850742 T SLITRK1 Intergenic 498602 6.33E-06 0.64(0.53-0.78) 6.88E-04 0.48(0.31-0.73) 2.75E-05 0.56(0.43-0.74) 9.45E-01 1.01(0.70-1.46)
3 rs10934853 EEFSEC 9 rs7847271 116870633 A TNC Intron 3.85E-06 0.67(0.56-0.79) 7.73E-03 0.60(0.41-0.87) 2.56E-03 0.68(0.54-0.88) 1.87E-02 0.69(0.50-0.94)
3 rs10934853 14 rs12433148 45666182 A RPLIOL  Intergenic 523788 9.25E-06 1.33(1.17-1.50)  6.91E-03 1.48(1.11-1.96) 4.50E-05 1.43(1.20-1.69) 6.32E-01 1.06(0.83-1.35)
3 rs10934853 14 rs2400997 100796860 T MIR656 Intergenic 193969 2.51E-06 1.25(1.14-1.38) 4.80E-05 1.57(1.26-1.95) 6.76E-02 1.13(0.99-1.28) 1.95E-03 1.34(1.11-1.60)
3 rs10934853 18 rs998124 40979660 G MIR4319 Intergenic -175531 5.21E-06 1.33(1.18-1.51) 3.56E-02 1.39(1.02-1.88) 3.64E-03 1.28(1.08-1.51) 3.56E-03 1.42(1.12-1.80)
3 rs2660753 NA 5 rs7717572 66869013 A CD180 Intergenic  -340640 3.39E-06 1.94(1.47-2.56) 2.84E-01 1.60(0.68-3.78) 2.80E-05 2.12(1.49-3.02) 5.80E-02 1.69(0.98-2.89)
3 rs2660753 6 rs319097 107852552 C PDSS2 Intron 9.59E-06 1.35(1.18-1.54) 2.02E-01 1.27(0.88-1.85) 3.15E-06 1.49(1.26-1.76) 5.53E-01 1.08(0.83-1.41)
3 rs2660753 13 rs7139820 106284593 A ARGLU1 Intergenic  -266078 5.64E-06 0.56(0.44-0.72) 1.47E-02 0.46(0.25-0.86) 2.07E-05 0.49(0.35-0.68) 4.97E-01 0.85(0.53-1.36)
4 rs17021918 PDLIM5 3 rs9757252 86977168 T VGLL3 Intergenic 92645 4.73E-06 1.25(1.13-1.37)  8.45E-03 1.35(1.08-1.69) 2.23E-03 1.22(1.07-1.38) 2.16E-02 1.24(1.03-1.50)
4 rs17021918 8 r$2921007 8269681 A SGK223 Intron 6.10E-06 1.40(1.21-1.63) 1.79E-02 1.60(1.08-2.35) 3.59E-06 1.58(1.30-1.92) 8.40E-01 1.03(0.78-1.36)
4 rs7679673 TET2 9 rs290258 92595560 G SYK Intergenic  -8273 1.49E-06 0.75(0.67-0.84)  2.11E-03 0.66(0.51-0.86) 3.01E-03 0.78(0.67-0.92) 1.39E-02 0.75(0.59-0.94)
4 rs7679673 11  rs11605083 15311822 C INSC Intergenic 86492 4.42E-06 1.28(1.15-1.43) 3.28E-01 1.13(0.89-1.44) 8.20E-04 1.28(1.11-1.48) 9.71E-04 1.42(1.15-1.75)
4 rs7679673 22 rs5751168 21175240 T ZNF280B Intron 4.11E-06 1.44(1.23-1.67)  4.75E-05 2.19(1.50-3.19) 3.38E-02 1.25(1.02-1.53) 9.09E-03 1.48(1.10-1.99)
6  rs9364554 NA 6 rs9351730 69351206 A BAI3 Intergenic  -51147 4.98E-06 1.25(1.13-1.37) 6.97E-02 1.22(0.98-1.52) 1.01E-03 1.25(1.09-1.42) 8.99E-03 1.27(1.06-1.52)
7 rs10486567 JAZF1 3 rs1795355 41574530 T ULK4 Intron 9.46E-06 0.79(0.71-0.88) 3.37E-02 0.77(0.60-0.98) 9.11E-03 0.83(0.72-0.95) 2.14E-03 0.73(0.60-0.89)
7 rs10486567 3 rs11720607 174325971 G SPATA16 Intron 4.87E-06 0.73(0.63-0.83) 2.45E-03 0.62(0.45-0.84) 2.34E-03 0.75(0.62-0.90) 5.43E-02 0.77(0.58-1.00)
7 rs6465657 LMTK2 3 rs12485321 124986 A CHL1 Intergenic  -88664 2.66E-06 0.81(0.74-0.88)  7.36E-02 0.83(0.67-1.02) 2.89E-05 0.78(0.69-0.88) 1.09E-01 0.87(0.74-1.03)
7 rs6465657 3 rs6548941 66555095 T 7.23E-06 1.32(1.17-1.49)  8.73E-03 1.49(1.11-2.01) 2.60E-05 1.42(1.21-1.67) 6.02E-01 1.06(0.84-1.34)
7 rs6465657 16  rs8057939 47951777 C  Cl6orf78 Intergenic  -13532 4.71E-06 1.37(1.20-1.57)  3.31E-02 1.43(1.03-1.98) 1.03E-03 1.36(1.13-1.63) 1.70E-02 1.36(1.06-1.75)
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8  rs10086908 NA 4 rs7694725 114220405 T ANK2 Intron 1.55E-06 1.36(1.20-1.55) 7.99E-03 1.46(1.10-1.92) 1.41E-05 1.47(1.24-1.75) 3.89E-01 1.11(0.87-1.42)
8  rs10086908 6  rs10456809 17921804 T KIF13A Intron 4.83E-06 1.25(1.14-1.38) 1.30E-02 1.31(1.06-1.62) 2.28E-03 1.23(1.08-1.40) 1.69E-02 1.26(1.04-1.52)
8  rs10086908 10 rs4917911 102549411 G PAX2 Intron 7.70E-06 1.43(1.22-1.67)  3.40E-02 1.46(1.03-2.07) 2.63E-04 1.48(1.20-1.83) 1.03E-01 1.30(0.95-1.79)
8  rs1447295 NA 7 rs7789197 40931652 A INHBA  Intergenic 763474 3.36E-06 0.66(0.56-0.79)  2.57E-03 0.55(0.38-0.81) 7.27E-03 0.72(0.56-0.91) 1.06E-02 0.66(0.48-0.91)
8 rs1447295 9 rs12682851 8002418 G C9orf123  Intergenic  -212619 1.53E-06 0.72(0.63-0.82) 9.66E-03 0.67(0.50-0.91) 2.15E-03 0.75(0.62-0.90) 6.56E-03 0.70(0.54-0.90)
8  rs1447295 10 rs10885582 116317540 T ABLIM1 Intron 3.70E-06 0.73(0.63-0.83)  9.33E-05 0.54(0.39-0.73) 1.27E-02 0.79(0.66-0.95) 3.46E-02 0.75(0.57-0.98)
8  rs1447295 15 rs11637980 94803657 G NR2F2 Intergenic 119161 1.55E-06 0.68(0.58-0.79) 1.67E-03 0.58(0.41-0.82) 5.73E-02 0.81(0.65-1.01) 8.29E-05 0.52(0.38-0.72)
8 rs1512268 NKX3.1 6 rs2523395 29810489 A LOC285830 Intron 1.53E-06 1.24(1.14-1.35) 1.89E-01 1.14(0.94-1.39) 4.54E-02 1.13(1.00-1.26) 2.98E-08 1.65(1.38-1.97)
8  rs1512268 7 rs517761 103156254 T RELN Intron 6.93E-06 0.82(0.75-0.90) 1.46E-01 0.86(0.70-1.05) 2.46E-05 0.78(0.70-0.88) 1.64E-01 0.89(0.75-1.05)
8 rs1512268 13 rs16944141 89663547 A MIR622 Intergenic  -17890 2.98E-06 0.65(0.54-0.78) 1.54E-01 0.76(0.51-1.11) 7.73E-07 0.54(0.42-0.69) 4.43E-01 0.87(0.60-1.25)
8  rs16901979 NA 12 rs12317459 81688687 A T™MTC2 Intron 3.80E-06 2.06(1.52-2.80) 7.13E-02 1.92(0.94-3.91) 1.71E-04 2.21(1.46-3.33) 4.00E-02 1.88(1.03-3.42)
8  rs2928679 NKX3.1 2 rs17198717 181943741 c ITGA4 Intergenic  -86123 7.80E-06 0.80(0.72-0.88) 3.19E-01 0.89(0.70-1.12) 2.91E-05 0.75(0.65-0.86) 6.73E-02 0.84(0.69-1.01)
8  rs445114 NA 22 rs6005451 26182183 c MN1 Intergenic 292082 4.10E-06 1.42(1.22-1.65)  4.95E-01 1.13(0.79-1.63) 1.71E-04 1.46(1.20-1.77) 3.28E-03 1.58(1.16-2.14)
8  rs6983267 NA 6 rs1011119 19972144 G D4 Intergenic 23250 7.20E-06 0.81(0.74-0.89) 1.45E-02 0.76(0.61-0.95) 2.85E-03 0.83(0.74-0.94) 1.58E-02 0.80(0.67-0.96)
8  rs6983267 15 rs543686 32855601 T ACTC1 Intergenic 11988 4.02E-06 1.24(1.13-1.35) 1.37E-01 1.18(0.95-1.45) 1.50E-04 1.26(1.12-1.42) 2.52E-02 1.22(1.03-1.46)
9 rs1571801 DAB2IC 8 rs2219968 79119213 A PKIA Intergenic  -471678 6.07E-07 1.30(1.17-1.43) 1.18E-02 1.35(1.07-1.70) 1.64E-04 1.30(1.14-1.50) 3.17E-02 1.24(1.02-1.52)
9  rs1571801 8  rs13264970 83236384 C SNX16 Intergenic  -319308 3.53E-06 0.77(0.69-0.86) 1.50E-02 0.74(0.59-0.94) 5.02E-03 0.80(0.68-0.93) 3.92E-03 0.72(0.58-0.90)
9 rs1571801 10 rs1547851 92364806 T HTR7 Intergenic 125750 7.45E-06 1.59(1.30-1.95) 2.72E-03 1.98(1.27-3.09) 7.35E-03 1.49(1.11-1.99) 2.42E-02 1.52(1.06-2.20)
9  rs1571801 21 rs11702869 19512402 A TMPRSS15 Intergenic  -814561 8.54E-06 0.79(0.71-0.87) 1.11E-01 0.83(0.66-1.04) 4.50E-05 0.74(0.64-0.85) 1.44E-01 0.86(0.70-1.05)
10 rs10993994 MSMB 3 rs6766510 12526807 C TSEN2 Intron 1.77€-06 1.58(1.31-1.91) 9.37E-02 1.46(0.94-2.26) 2.98E-05 1.75(1.34-2.27) 5.32E-02 1.41(1.00-1.98)
10 rs10993994 4 rs567404 16810346 G QDPR Intergenic 286768 5.91E-06 0.81(0.74-0.89) 7.30E-02 0.82(0.66-1.02) 1.16E-04 0.78(0.69-0.89) 7.90E-02 0.85(0.71-1.02)
10 rs4962416 CTBP2 5 rs10940579 57166575 C ACTBL2 Intergenic  -352182 3.81E-06 1.32(1.18-1.49) 4.85E-02 1.36(1.00-1.84) 1.77€-03 1.29(1.10-1.51) 4.74E-03 1.39(1.10-1.74)
10 rs4962416 7 rs9649213 97859147 G BAIAP2L1 Intron 1.42E-06 1.28(1.16-1.42) 7.77E-01 1.04(0.80-1.34) 6.18E-06 1.36(1.19-1.55) 1.40E-02 1.27(1.05-1.54)
10  rs4962416 9  rs10810120 14234376  C NFIB Intron 8.44E-06 1.40(1.21-1.62)  6.39E-02 1.39(0.98-1.96) 5.58E-03 1.32(1.08-1.61) 1.76E-03 1.59(1.19-2.12)
11 rs10896449 MYEOV 2 rs13398206 198877341 C PLCL1 Intergenic 154488 3.67E-06 1.24(1.13-1.36) 6.86E-01 1.05(0.84-1.30) 1.29€-04 1.27(1.12-1.44) 1.91E-03 1.33(1.11-1.58)
11 rs10896449 7 rs6968681 130286690 T FLI43663 Intron 7.31E-06 0.79(0.72-0.88) 5.86E-01 0.94(0.76-1.17) 4.78E-05 0.75(0.65-0.86) 1.14E-02 0.78(0.64-0.95)
11 rs10896449 12 rs17354197 88169501 T DUSP6 Intergenic 96467 8.82E-06 1.41(1.21-1.64) 3.97E-02 1.49(1.02-2.18) 2.35E-03 1.37(1.12-1.67) 1.10E-02 1.45(1.09-1.92)
11 rs10896449 21 rs447988 39410617 T PSMG1 Intergenic 58637 5.79E-06 0.67(0.56-0.80) 1.96E-01 0.76(0.50-1.15) 1.93E-02 0.76(0.60-0.96) 1.73E-05 0.49(0.35-0.68)

29



Supplementary Table 4 cont’d

SNP1

SNP2

Meta-results

CAPS

JHH

CGEMS

Minor

Relative

CHR SNP Gene CHR SNP Position Allele Gene Location Position P OR P OR P OR P OR

11 rs12418451 MYEOV 3 rs1916284 57369806 C DNAH12 Intron 1.31E-06 0.79(0.71-0.87) 1.12E-01 0.83(0.65-1.05) 2.69E-05 0.76(0.66-0.86) 4.50E-02 0.83(0.68-1.00)
11  rs12418451 3 rs10513723 176062702 A NAALADL2 Intron 5.61E-06 1.41(1.21-1.63) 7.22E-03 1.58(1.13-2.21) 1.61E-02 1.27(1.05-1.54) 1.46E-03 1.64(1.21-2.22)
11 rs12418451 8 rs7829048 4689690 C CSMD1 Intron 9.76E-06 0.74(0.65-0.85) 1.22E-02 0.68(0.50-0.92) 4.52E-02 0.84(0.71-1.00) 1.81E-04 0.60(0.46-0.78)
11  rs12418451 14 rs1243647 20094459 A RNASE9 missense 'CG)204P(CCG)  1.42E-06 0.75(0.67-0.84) 6.63E-02 0.77(0.58-1.02) 5.02E-04 0.76(0.65-0.88) 4.91E-03 0.72(0.58-0.91)
11 rs12418451 15 rs784411 46827089 C CEP152 Intron 1.15E-07 1.42(1.25-1.61) 8.83E-03 1.55(1.12-2.16) 5.28E-04 1.34(1.14-1.58) 1.32E-03 1.53(1.18-1.99)
11 rs7127900 IGF2, IGF2AS 2 rs3789080 111514002 C ACOXL Intron 4.37E-06 0.71(0.61-0.82) 2.23E-02 0.69(0.51-0.95) 1.24E-04 0.67(0.54-0.82) 1.32E-01 0.80(0.61-1.07)
11 rs7127900 INS, TH 8 rs13258681 124783903 C ANXA13 Intron 3.65E-06 1.32(1.17-1.48) 4.58E-02 1.32(1.01-1.73) 5.43E-04 1.33(1.13-1.56) 1.90E-02 1.31(1.05-1.64)
11 rs7127900 13 rs9594759 41930593 C TNFSF11  Intergenic -104279 7.96E-06 0.78(0.70-0.87) 3.34E-01 0.88(0.69-1.14) 4.58E-04 0.77(0.67-0.89) 4.43E-03 0.73(0.58-0.91)
11 rs7127900 22 rs12628051 38984222 C TNRC6B Intron 3.39E-06 1.30(1.17-1.46) 1.82E-03 1.50(1.16-1.93) 6.14E-03 1.24(1.06-1.44) 1.44E-02 1.32(1.06-1.65)
11 rs7127900 22 rs4821941 39005037 G TNRC6B Intron 4.35E-06 1.30(1.16-1.46) 2.71E-03 1.48(1.15-1.91) 6.61E-03 1.23(1.06-1.44) 1.27€-02 1.33(1.06-1.66)
17  rs11649743 HNF1B 6 rs13192613 123324640 T CLVS2 Intergenic  -34641 3.07E-06 1.37(1.20-1.56) 6.67E-03 1.56(1.13-2.16) 3.69E-04 1.38(1.16-1.65) 8.49E-02 1.24(0.97-1.59)
17 rs4430796 HNF1B 1 rs731174 37969428 C EPHA10 Intron 4.55E-06 1.27(1.15-1.40) 5.03E-02 1.24(1.00-1.54) 3.20E-02 1.18(1.01-1.38) 1.13E-04 1.41(1.19-1.68)
17 rs4430796 2 rs12694942 158518681 T upPP2 Intergenic  -41256 7.84E-06 0.80(0.73-0.88) 5.22E-03 0.75(0.61-0.92) 1.87E-03 0.79(0.68-0.92) 6.36E-02 0.85(0.72-1.01)
17 rs4430796 3 rs13067734 143445705 C GK5 Intergenic  -18566 8.07E-06 0.80(0.73-0.88) 3.87E-01 0.91(0.74-1.13) 8.47E-02 0.88(0.77-1.02) 2.79E-07 0.63(0.53-0.75)
17 rs4430796 9 rs10812303 25712117 T TUSC1 Intergenic  -43261 5.59E-06 1.34(1.18-1.52) 6.63E-03 1.46(1.11-1.91) 7.57E-03 1.27(1.07-1.52) 9.01E-03 1.37(1.08-1.73)
17 rs4430796 9 rs7855134 70264671 T PGM5 Intron 7.52E-06 1.76(1.38-2.26) 3.79E-02 1.89(1.04-3.44) 1.92E-04 1.93(1.37-2.73) 9.14E-02 1.46(0.94-2.28)
17 rs443079 12 rs4489787 47097367 C  ANP32D  Intergenic  -55348 1.26E-06 0.68(0.58-0.80)  5.26E-01 0.89(0.63-1.27) 1.41E-03 0.70(0.56-0.87) 3.05E-05 0.55(0.42-0.73)
17 rs1859962 NA 2 rs16867225 180749531 A cwcez2 Intergenic  -169506 3.12E-06 0.64(0.53-0.77) 1.33E-03 0.48(0.30-0.75) 4.80E-03 0.70(0.54-0.90) 1.84E-02 0.65(0.45-0.93)
17 rs1859962 7  rs10277209 108790810 C C7orf66 Intergenic  -478937 3.81E-06 1.36(1.19-1.55) 4.08E-02 1.39(1.01-1.89) 4.04E-03 1.29(1.08-1.53) 1.55E-03 1.52(1.17-1.97)
19 rs2735839 KLK3 20 rs6089829 61139481 A LOC63930 Intron 3.21E-06 0.74(0.65-0.84) 2.53E-02 0.71(0.52-0.96) 1.26E-03 0.75(0.64-0.90) 1.10E-02 0.72(0.56-0.93)
19  rs8102476 NA 1 rs1866967 29958249 G PTPRU Intergenic 432337 5.16E-06 0.82(0.75-0.89) 2.70E-02 0.79(0.64-0.97) 5.10E-03 0.85(0.75-0.95) 2.97E-03 0.78(0.66-0.92)
19  rs8102476 10 rs10795917 12091822 G UPF2 Intron 6.79E-07 1.24(1.14-1.36) 1.88E-01 1.15(0.93-1.41) 1.136-04 1.26(1.12-1.42) 3.14E-03 1.27(1.08-1.50)
19 rs887391 PPP1R14A 4 rs735172 5809770 C EVC Intron 2.03E-06 1.31(1.17-1.46) 6.58E-03 1.43(1.10-1.85) 2.37E-03 1.27(1.09-1.47) 1.02E-02 1.32(1.07-1.63)
19 rs887391 5 rs4463179 13558432 A DNAH5 Intergenic 185005 2.22E-06 0.64(0.53-0.77) 3.00E-02 0.64(0.42-0.96) 8.35E-05 0.59(0.46-0.77) 8.28E-02 0.73(0.51-1.04)
19 rs887391 8  rs2981156 39988790  C D02 Intron 8.07E-06 1.31(1.16-1.47)  2.22E-03 1.53(1.17-2.02) 1.06E-03 1.31(1.11-1.53) 1.58E-01 1.18(0.94-1.47)
19 rs887391 12 rs10844540 33349548 A SYT10 Intergenic 70067 7.59E-06 1.40(1.21-1.62) 3.86E-02 1.43(1.02-2.02) 8.40E-02 1.19(0.98-1.45) 6.16E-06 1.96(1.46-2.62)
22 rs5759167 TTLL1,BIK, 7 rs12111744 20988023 A RPL23P8  Intergenic 154059 5.95E-06 1.30(1.16-1.46) 3.33E-01 1.14(0.88-1.48) 5.44E-04 1.31(1.12-1.53) 2.50E-03 1.42(1.13-1.78)
22 rs5759167 MCAT,PACSIN2 12 rs2711721 45658537 T AMIGO2 Intergenic 97220 2.11E-06 1.28(1.16-1.42) 1.90E-01 1.22(0.91-1.65) 1.75E-04 1.29(1.13-1.47) 9.06E-03 1.30(1.07-1.58)
22 rs5945619 NUDTI0 7 rs7792744 97325907 c ASNS Intron 5.62E-06 0.80(0.73-0.88) 9.09E-05 0.74(0.64-0.86) 1.00E+00 1.00(1.00-1.00) 7.82E-03 0.85(0.75-0.96)
22 rs5945619 9 rs1044214 85465379 A UBQLN1 utr3 7.97E-06 1.26(1.14-1.39) 5.88E-04 1.32(1.13-1.55) 1.00E+00 1.00(1.00-1.00) 3.05E-03 1.22(1.07-1.39)
22 rs5945619 18 rs6507016 29181773 T  Cl8orf34 Intron 4.33E-06 0.78(0.71-0.87)  2.54E-02 0.83(0.70-0.98) 1.00E+00 1.00(1.00-1.00) 4.10E-05 0.76(0.66-0.86)
22 rs9623117 TNRC6B 3 rs6763848 1487587 A CNTN6  Intergenic 67309 3.90E-06 1.30(1.16-1.45)  7.99E-01 1.03(0.80-1.34) 1.27E-06 1.44(1.24-1.66) 8.57E-02 1.21(0.97-1.51)
22 rs9623117 4 rs1713511 43472127 A KCTD8 Intergenic 398550 7.87E-06 1.31(1.16-1.47) 4.94E-03 1.54(1.14-2.09) 6.71E-03 1.23(1.06-1.44) 1.06E-02 1.36(1.07-1.72)
22 rs9623117 6  rs2844806 30041418 T HCGY  Intergenic  -9453 8.12E-06 1.27(1.14-1.41)  1.82E-01 1.20(0.92-1.55) 3.45E-03 1.23(1.07-1.41) 7.92E-04 1.43(1.16-1.76)
22 rs9623117 6 rs1200562 70960267 C COL19A1 Intron 9.96E-06 0.64(0.53-0.78) 1.33E-01 0.71(0.46-1.11) 8.29E-06 0.54(0.42-0.71) 3.62E-01 0.83(0.57-1.23)
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Abbreviations: SNP1 indicate the 32 known PCa-risk SNPs. SNP 2 indicates the interacting SNPs; Chr, chromosome; Relative position is the distance of SNP2 relative to
the nearest gene if SNP2 is located in the intergenic region; OR : Odds Ratio; P and OR are for the multiplicative interaction term. P and OR for the Meta-analysis are

calculated based on a Cochran-Mantel-Haenszel test. CAPS: PCa case-control study from Sweden; JHH: Johns Hopkins Hospital; CGEMS: the Cancer Genetic Markers
of Susceptibility;
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